Spark ML机器学习:归一化之最小最大值标准化-MinMaxScaler

MinMaxScaler转换由向量行组成的数据集,将每个特征调整到一个特定的范围(通常是[0,1])。它有下面两个参数:

  • min:默认是0。转换的下界,被所有的特征共享。
  • max:默认是1。转换的上界,被所有特征共享。

  MinMaxScaler计算数据集上的概要统计数据,产生一个MinMaxScalerModel。然后就可以用这个模型单独的转换每个特征到特定的范围。 特征E被转换后的值可以用下面的公式计算:

$$\frac{e_{i} – E_{min}}{E_{max} – E_{min}} * (max – min) + min$$

  对于E_{max} == E_{min}的情况,Rescaled(e_i) = 0.5 * (max + min)

  注意,由于0值有可能转换成非0的值,所以转换的输出为DenseVector,即使输入为稀疏的数据也一样。下面的例子展示了如何将特征转换到[0,1]。例子:


// $example on$
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.MinMaxScaler
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object MinMaxScalerExample {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf();
sparkConf.setMaster("local[*]").setAppName(this.getClass.getSimpleName)
val spark = SparkSession
.builder
.config(sparkConf)
.appName("MinMaxScalerExample")
.getOrCreate()

// $example on$
val dataFrame = spark.createDataFrame(Seq(
(0, Vectors.dense(1.0, 0.1, -1.0)),
(1, Vectors.dense(2.0, 1.1, 1.0)),
(2, Vectors.dense(3.0, 10.1, 3.0))
)).toDF("id", "features")

val scaler = new MinMaxScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")

// Compute summary statistics and generate MinMaxScalerModel
val scalerModel = scaler.fit(dataFrame)

// rescale each feature to range [min, max].
val scaledData = scalerModel.transform(dataFrame)
println(s"Features scaled to range: [${scaler.getMin}, ${scaler.getMax}]")
scaledData.select("features", "scaledFeatures").show()
// $example off$

spark.stop()
}
}

结果:

+————–+————–+
| features|scaledFeatures|
+————–+————–+
|[1.0,0.1,-1.0]| [0.0,0.0,0.0]|
| [2.0,1.1,1.0]| [0.5,0.1,0.5]|
|[3.0,10.1,3.0]| [1.0,1.0,1.0]|
+————–+————–+

关注公众号“大模型全栈程序员”回复“小程序”获取1000个小程序打包源码。更多免费资源在http://www.gitweixin.com/?p=2627

发表评论

邮箱地址不会被公开。 必填项已用*标注